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The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate matura-
tion in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or pro-
tein–protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli
as a fusion to maltose binding protein forms homopolymers visible by negative staining electron micros-
copy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the
inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in
AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic
fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or
modifications are necessary for AtDRP1A’s in vivo function.

� 2010 Elsevier Inc. All rights reserved.
Introduction

The Arabidopsis dynamin-related protein 1A (AtDRP1A) is a
member of the dynamin superfamily of GTPases that plays a criti-
cal role in Arabidopsis development [1–5]. It is essential for proper
maturation of the cell plate during cytokinesis [3,4,6], and recent
studies have also suggested that it functions like dynamin in Clath-
rin-Mediated Endocytosis (CME) [5]. Dynamin is the founding and
best characterized member of the dynamin superfamily, and plays
both early regulatory and late mechanical roles in the formation
and severing of clathrin-coated vesicles from the plasma mem-
brane (PM)[7]. During CME, dynamin activity at endocytic buds
is regulated by a combination of its pleckstrin homology (PH) do-
main, which binds the signaling phospholipid PI(4,5)P2, and its
proline rich domain (PRD), which binds other endocytic proteins.
Neither of these domains, nor any other recognized lipid- or pro-
tein-binding domains, are present in AtDRP1A, raising the question
of how AtDRP1A is targeted and regulated during endocytosis and
cytokinesis.
ll rights reserved.
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Subcellular fractionation studies have revealed that AtDRP1A is
a peripheral membrane protein that is predominantly present as a
high molecular weight protein complex [3,8]. However, it has not
been determined whether AtDRP1A binds directly to membranes
or indirectly via other protein partners, and whether the high
molecular weight complexes are homopolymers of AtDRP1A or
multi-protein complexes. The soybean homolog of AtDRP1A,
GmDRP1 (Phragmoplastin), was reported to form a homopolymer
when purified from E. coli as a glutathione-S-transferase (GST) fu-
sion protein, and two self-interaction domains were identified by
yeast-two-hybrid and in vitro binding studies [9]. However, GST-
GmDRP1 was purified under denaturing conditions, and was not
demonstrated to have GTPase activity, limiting its utility for bio-
chemical characterization.

Here we present the in vitro characterization of GTPase active,
E. coli expressed, AtDRP1A, including evidence of its inherent
self-interaction and lipid-binding ability. Significantly, purified
AtDRP1A behaves very differently than purified dynamin, and in
ways that are difficult to reconcile with what is known of its
in vivo activity, suggesting that additional factors or modifications
are needed for AtDRP1A to function.
Materials and methods

General reagents. All reagents were purchased through Fisher
Scientific (Pittsburg, PA) unless otherwise noted. SDS–PAGE and
immunoblotting conditions and a-DRP1A antibodies are described
in [3] with the exception that Supersignal West Pico (Pierce,
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Rockford, IL) was used as the chemiluminesence substrate for
detection of the HRP-labeled secondary antibodies. Rabbit a-MBP
antibodies were purchased from Immunology Consultants Labora-
tories (Newberg, OR). Spotted lipid assays were performed as de-
scribed by Dowler et al. [10]. All oligonucleotides were
purchased from Integrated DNA Technologies (Coralville, IA) and
PCR amplification was performed with PfuUltra (Stratagene, La Jol-
la, CA).

Generation of the His8-MBP-AtDRP1A expression clone. The AtDR-
P1A coding sequence (full length, including stop codon) was PCR
amplified using primers 50-ggggacaagtttgtacaaaaaagcaggctcaatg
gaaaatctgatctctctggttaa-30 (forward) and 50-ggggaccactttgtacaaga
aagctgggtatcacttggaccaagcaacagcatcgatctcg-30 (reverse), which
introduced attB1/B2 recombination sites at the ends of the gene.
The PCR product was inserted into the plasmid pGEM-T-EASY (Pro-
mega, Madison WI) by TA cloning and then recombined into
pDONR201 (Invitrogen, Carlsbad, CA) using standard Gateway�

cloning procedures (Invitrogen, Carlsbad, CA). A DNA sequence
encoding the Tobacco-Etch Virus (TEV) cleavage site was inserted
in frame with the first codon of DRP1A by site-directed mutagene-
sis [11] using the 50 phosphorylated primers 50-gagaacctctattt
ccagggcgaaaatctgatctctctggttaac-30 and 50-tgagcctgcttttttgtacaaag-
30, which annealed to AtDRP1A and pDONR201, respectively. The
AtDRP1A coding sequence was verified by sequencing, and then
recombined into the destination vector pVP16 [12] to created
pVP16-TEV-DRP1A. pVP16 contains His8-Maltose Binding Protein
(His8-MBP), in frame with the N-terminus of the gene inserted into
the recombination site (e.g., TEV-DRP1A).Expression and purifica-
tion of DRP1A. pVP16-TEV-DRP1A in E. coli strain B834pRARE2
was used to inoculate 50 mL of LB (Luria Broth + carbenicil-
lin50 lg/ml/chloramphenicol34 lg/ml) which was grown to saturation
(16 h) with shaking at 37 �C. This culture was diluted 1:20 into 1 L
LB and immediately induced with 1 mM Isopropyl b-D-1-thiogalac-
topyranoside (IPTG). The 1 L culture was grown an additional 16 h
with shaking at 18 �C. The bacteria expressing His8-MBP-TEV-
DRP1A were harvested by centrifugation (10 min at 2000g) and
resuspended in 10 ml H(0.15)NG buffer (25 mM HEPES pH 7.5,
0.15 M NaCl, 5% v/v glycerol, 10 mM b-ME) with protease inhibi-
tors and 1 mg/ml lysozyme prior to lysis by French Press (2 passes,
1900 PSI). The lysis mixture was cleared twice by centrifugation at
2000g and TX-100 was added to the supernatant to a final concen-
tration of 2% (v/v) before incubation with 1 ml bed volume amy-
lose resin (New England Biolabs, Ipswich, MA) in a 10 ml
disposable poly-prep column (Biorad, Hercules, CA) at 4 �C with
rotation for P 30 min. The unbound was drained by gravity flow
and the resin washed with 10mls H(0.15)NG + 1 mM ATP + 2%TX-
100 and then 50 ml cold H(0.15)NG prior to elution with
H(0.15)NG + 10 mM maltose. The concentration of purified His8-
MBP-TEV-DRP1A was measured with Biorad protein assay reagent
(Biorad, Hurcules, CA) and diluted to 0.5 mg/ml (5 mM). Purified
His6-TEV protease [12] was added to a concentration of 0.25 mg/
ml and the cleavage reaction was incubated with rotation at
22 �C for 24–48 h. Purity of the preparation and completeness of
the cleavage reaction was assayed by SDS–PAGE. Cleaved AtDRP1A
was frozen in liquid nitrogen and stored at �80 �C.

GTPase assays. Colorimetric GTPase assays for determination
of kCAT and kM were performed essentially as described by
Leonard et al. [13]. In brief, purified AtDRP1A (0.1 lM final)
was mixed with GTP (50–500 lM final) in reaction buffer (20
mM HEPES, pH 7.5, 150 mM NaCl, 2 mM MgCl2) and incubated
at 22 �C; 0, 2, 5, 10 and 15 min time points were taken and con-
centrations of released phosphate determined by addition of the
color reagent (1 M HCl, 0.1% w/v Malachite Green, 1% w/v
Ammonium Molybdate Tetrahydrate) and measurement of
absorbance at 660 nM on a plate reader (Bio-Tek instruments
EL311).
Fractionation. Purified His8-MBP-AtDRP1A or AtDRP1A was di-
luted to 200 nM in H(0.15)NG + 2 mM MgCl2 with or without
1 mM GTP and incubated 5 min 22 �C. After 5 min, an additional
1 mM GTP was added to the + GTP sample, and 200 ll of each sam-
ple was transferred to a TLA100.1 tube and pelleted for 30 min at
150,000g in a Beckman (Fullerton, CA) tabletop ultracentrifuge.
The load and upper 80 ll of the reaction volume were analyzed
by SDS–PAGE and immunoblotting against AtDRP1A and MBP.
For sucrose gradient fractionation, 200 ll of 1.25 lM AtDRP1A
was loaded on top of a 4.8 mL 5–50% (w/v) sucrose gradient in
H(0.075)N (25 mM HEPES pH 7.5 m, 0.075 M NaCl, 2 mM MgCl2,
and 10 mM b-ME) poured on an Autodensiflow gradient maker
(Labconco, Kansas City, Kansas). Gradients were centrifuged 18 h
at 4 �C in a SW50.1 rotor at 150,000g. 200 ll fractions were col-
lected using a gradient collector (model 640, Isco Inc., Lincoln,
NE). Fractionation standards (75 lg BSA, 75 lg Catalase, 50 lg
AtCDC48 [14]), were loaded on an identical gradient and centri-
fuged and fractionated in parallel. The fractions were analyzed by
SDS PAGE followed by Coomassie staining (fractionation stan-
dards) or immunoblotting using a-AtDRP1A antibodies, and refrac-
tive index was used to compare fractions between gradients.

Liposome generation. DOPC, DOPS, DOPE, Soy PC and PI(4,5)P2

were purchased from Avanti Polar Lipids (Alabaster, AL). PI(3)P,
PI(4)P and PI(5)P were from Cayman Chemical (Ann Arbor, MI),
and b-sitosterol was from Calbiochem (San Diego, CA). Dried lipids
were resuspended in chloroform or 1:1 chloroform/methanol and
mixed by vortexing in a 12 � 75 mm glass test tube. The lipid mix-
ture was spiked with 3H-DOPC (Perkin–Elmer) to 6 lCi/ml and
dried under a gentle stream of Argon until visibly dry (10–
15 min), and then placed under house vacuum for an additional
30 min. The resulting film was resuspended to 330 mM total lipid
in H(0.15NG) buffer and allowed to hydrate 15 min at RT before
being vortexed for 5 min. The mixture was then subjected to five
free-thaw cycles (liquid nitrogen �37� water bath) before being
extruded through a 50 nm polycarbonate membrane (Avanti Polar
Lipids, Alabaster, AL) and stored at �80 �C under argon until use.

Liposome flotation assays. Liposome flotation assays were per-
formed generally as described in [15]. Purified AtDRP1A protein
(200 nM to 1 lM final concentration) was mixed with 50 nm lipo-
somes (44 mM final concentration) and buffer H(0.15)NG to a final
volume of 75 ll in a sialinized 0.65 ml ultracentrifuge tube and
incubated 30 min at 22 �C with occasional mixing. The binding
reaction was diluted with an equal volume of ice-cold 80% (w/v)
Accudenz (Accurate Chemical and Scientific Corporation, West-
bury, NY) in H(0.015)NG, transferred to the bottom of a
5 � 41 mm Ultra-Clear centrifuge tube (Beckman-Coulter), and
overlayed with 300 ll 30% (w/v) Accudenz followed by 100 ll
H(0.15)NG then centrifuged 1 h or more at 243,000g at 4 �C in an
SW50.1 rotor with tube adapters. Fractions (80 ll) were collected
from the top and analyzed for lipid content by scintillation count-
ing and protein content by SDS–PAGE followed by Coomassie
staining or immunoblotting.

Negative staining electron microscopy. All electron microscopy
was performed at the UW Madison Medical School EM Facility
on a Phillips CM120 STEM. For visualization of AtDRP1A, purified
protein was diluted to 1 lM in buffer H(0.075)N with or without
1 mM GTP, dried onto a pioloform (Ted Pella, Redding, CA) coated
copper grid, and stained with Nano-W� (Nanoprobes, Yaphank,
NY), an organo-tungstate stain. Liposomes were diluted to
100 mM lipid in H(0.075)N, mixed with an equal volume 1%
OsO4, then dried onto pioloform coated grids and stained with
Nano-W�. For visualization of AtDRP1A bound to liposomes, puri-
fied AtDRP1A was mixed with liposomes to a final concentration of
1 lM AtDPR1A and 100 mM lipid in H(0.075)N and incubated for
30 min 22 �C with occasional mixing. The mixture was then
stained with OsO4 and Nano-W� as for liposomes.
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Results and discussion

Purification of GTPase active AtDRP1A

GTPase active AtDRP1A was expressed in E. coli as a transla-
tional fusion to a His8-MBP tag, purified using amylose affinity
chromatography and treated with His6-TEV protease to remove
the His8-MBP tag (Fig. 1A). The GTPase activity of the purified pro-
tein increased approximately twofold upon cleavage of the His8-
MBP tag (Fig. 1B). In contrast, expression of other affinity tagged
forms of AtDRP1A, including GST-AtDRP1A in E. coli and S. cerevisae
and AtDRP1A-His6 in S. cerevisae, did not yield GTPase-active
protein.

His8-MBP and His6-TEV protease could not be removed from the
mixture by immobilized Ni affinity chromatography due to non-
specific binding of AtDRP1A to the nickel resin. Therefore, in all
subsequent experiments, AtDRP1A was assayed in the presence
of cleaved His8-MBP and His6-TEV, with a mixture of His6-TEV
and purified His8-MBP serving as a negative control.

The kCat and kM of GTP hydrolysis by AtDRP1A was measured
by a colorimetric GTPase assay [13] in the presence of varying con-
centrations of GTP (Fig. 1C). kcat and kM values varied between
preparations, as has been observed for dynamin [16]. The average
kcat value was 28 ± 5.34/min, which falls between the kcat values
reported for lipid-tubule stimulated (105 ± 47/min) and unstimu-
lated dynamin (2.6 ± 0.98/min) [17]. The average kM was
99 ± 59 lM, which is lower than that reported for stimulated
(37 ± 18 lM), but similar to that of unstimulated (102 ± 35 lM)
dynamin [17].

Purified AtDRP1A is polymeric

As shown in Fig. 1A, His8-MBP-DRP1A, AtDRP1A, and His8-MBP
migrated as 110 kD, 65 kD and 45 kD polypeptides, respectively,
when analyzed by SDS–PAGE. However, when the AtDRP1A cleav-
age mixture, containing AtDRP1A, His8-MBP and His6-TEV, was
subjected to centrifugation at 150,000g, AtDRP1A, but not His8-
MBP, was fully depleted from the supernatant (Fig. 2A). His8-
MBP-AtDRP1A likewise pelleted at 150,000g, indicating that both
His8-MBP tagged and tag-free AtDRP1A form large homopolymers
in the presence of 150 mM NaCl. This sedimentation behavior
was not altered by incubation with 1 mM GTP (Fig. 2A). When sub-
jected to velocity sedimentation gradient analysis in the presence
of 75 mM NaCl, AtDRP1A sedimented beneath the 17S/550 kDa
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Fig. 1. Production of GTPase active AtDRP1A. (A) SDS–PAGE gel analysis of E. coli expre
after (lane 2) cleavage of His8-MBP with TEV protease. Proteins were detected by Coom
AtDRP1A, His8-MBP-AtDRP1A and a mixture of His8-MBP and His6-TEV (negative contr
activity of TEV-cleaved AtDRP1A at various concentrations of GTP was used to calculate
protein standard, CDC48 [14], further demonstrating the polymeric
nature of E. coli expressed AtDRP1A (Fig. 2B). This behavior is dis-
tinctly different than that of purified dynamin, which is found both
in polymeric and soluble, dimeric/tetrameric forms, with the solu-
ble form favored in the presence of P 25 mM NaCl or upon addi-
tion of GTP [18–20].

When purified dynamin is induced to polymerize by dilution in-
to 6 25 mM NaCl buffers or by addition of GDP-BeF2, it forms rings
and spirals with a constant diameter [21,22]. In contrast, the size
and shape of tag-free AtDRP1A polymers visualized by negative
staining electron microscopy (EM) was found to be highly hetero-
geneous, with no discernible regularity in structure (Fig. 2C). Addi-
tion of GTP to purified AtDRP1A did not result in a visible change in
polymer size or structure (Supplementary Fig. 1).

Similar to animal dynamin [18] GST-GmDRP1 was reported to
exist predominantly as monomers and dimers in the presence of
150 mM NaCl, only forming large polymers with a helical nature
at 15 mM NaCl [9]. However, these results were based solely on
EM analysis, and were not verified through other analytical meth-
ods. The smallest AtDRP1A particles we observed by EM (Fig. 2C,
arrowheads) were similar in appearance to those interpreted as
68 kDa monomers or dimers of GST-GmDRP1 by Zhang et al. [9];
however by analytical sedimentation analysis (Fig. 2B) we estimate
these structures to be comprised of more than 10 subunits (i.e.,
P680 kDa). The larger AtDRP1A structures we observed at
75 mM NaCl (Fig. 2C, arrows) are similar in appearance to the heli-
cal arrays of GST-GmDRP1 imaged by Zhang et al. [9] at 15 mM
NaCl. However, the AtDRP1A structures (Fig. 2C) are heterogenous
in size and curvature, and resemble neither the regular polymers
formed by purified dynamin [21] nor the 45 nm diameter AtDR-
P1A-containing rings observed encircling cell plate membrane tu-
bules during syncytial endosperm cellularization [6].

AtDRP1A interacts with PM-mimetic liposomes

In interphase Arabidopsis cells, AtDRP1A-GFP localizes to endo-
cytic sites at the PM [5], and fractionation studies of cell extracts
have similarly shown AtDRP1A to be primarily associated with
microsomal membranes [3,8]. Previous studies have demonstrated
that dynamin assembles onto PI(4,5)P2-containing liposomes via
specific interactions between the PI(4,5)P2 headgroup and dynam-
in’s PH domain, and that this interaction is essential for dyanmin’s
function in CME [23,24]. However, the AtDRP1A amino acid se-
quence does not contain any predicted lipid-binding domains
C
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(SMART server http://smart.embl-heidelberg.de/ [25]). Therefore,
we examined whether or not AtDRP1A polymers had any intrinsic
affinity for PM phospholipids through binding studies to protein-
free PM-mimetic (PMM) liposomes, whose lipid composition clo-
sely resembled that of the cytosolic face of the plant PM bilayer.
Previous studies have determined the total lipid composition of
the Arabidopsis PM [26] and have shown that PS is restricted to
the inner leaflet of plant cell PMs [27]. PMM liposomes were gen-
erated from a mixture of 40 mol% b-sitosterol, 25 mol% Soy PC,
20 mol% DOPE, 10 mol% DOPS and 5 mol% DOPG with trace
amounts of H3-DOPC. Binding was assayed by liposome flotation
followed by scintillation counting and immunoblotting. AtDRP1A,
but not His8-MBP, showed robust binding to PMM liposomes
(Fig. 3A).

The PMM liposomes have a net negative charge due to the pres-
ence of DOPS and DOPG, suggesting that the interaction with poly-
mers of AtDRP1A, which is predicted to have a net positive charge
(PI = 8.5), might be based on charge–charge interactions. Consis-
tent with this, AtDRP1A did not show binding to uncharged lipo-
somes lacking DOPS and DOPG (40 mol% b-sitosterol, 40 mol%
Soy PC, 20 mol% DOPE) (Fig. 3B).
Interestingly, in spotted lipid overlay assays AtDRP1A did not
show binding to DOPS, but instead showed specific binding to
PI(3)P and PI(5)P, with less binding to PI(4)P, similar to what has
been reported for AtDRP2A [28] (Supplementary Fig. 2A). However,
in liposome flotation assays AtDRP1A showed similar binding to
DOPC-based liposomes containing 20% DOPS or 10% PI(3)P, PI(4)P
or PI(5)P, as well as liposomes containing as little as 2% DOPS (Sup-
plementary Fig. 2B–C).

AtDRP1A-induced liposome clustering

Both dynamin and the yeast dynamin-related protein ScDMN1
(involved in mitochondrial fission) have been shown to assemble
onto the outer surface of liposomes in vitro, and cause the deforma-
tion of those liposomes into tubules [29–34]. To determine
whether AtDRP1A polymers similarly affect liposome structure,
protein-free PMM liposomes (Fig. 3B) and PMM liposomes preincu-
bated with AtDRP1A (Fig. 3C) were stained and visualized by EM.
Liposomes bound to AtDRP1A appeared as darkly staining clusters,
which were not observed in protein-free liposome samples. The
addition of GTP to these AtDRP1A-liposome complexes resulted

http://smart.embl-heidelberg.de/
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in no discernible change in structure (Supplementary Fig. 3). This
clustering of liposomes onto AtDRP1A polymers is very different
than what has been observed for dynamin or ScDMN1 in vitro,
and is also distinct from the AtDRP1A-containing rings observed
encircling cell plate membrane tubules in vivo during syncytial
endosperm cellularization [6].

Conclusions

Our analysis of the in vitro structure and membrane lipid inter-
action of purified, bacterially-expressed AtDRP1A suggest that the
plant-specific DRP1 family has distinct characteristics from animal
dynamin, even though previous studies have demonstrated that
AtDRP1A, like dynamin, functions in CME [5]. Likewise, the propen-
sity of purified AtDRP1A to form stable, GTP-insensitive, heteroge-
neous polymers that promote liposome clustering contrasts with
the in vivo observation that AtDRP1A-GFP exists in a cytoplasmic
(presumably soluble) pool [4], and that AtDRP1A can polymerize
around membrane tubules during cell plate formation [6]. This
suggests that E. coli expressed AtDRP1A, while GTPase active, is
lacking one or more in vivo factors necessary for modulating the
polymeric state of individual AtDRP1A subunits, and thereby poly-
merizes inappropriately into a form that does not retain full
functionality.

One possibility is that the activity and polymeric structure of
AtDRP1A is regulated by post-translational modification, such as
phosphorylation. Park et al. [8] found approximately 10% of cellular
AtDRP1A to be soluble upon cell disruption, and reported that this
soluble form migrated slightly slower on SDS–PAGE gels. This
slower migration could be reversed by alkaline-phosphatase treat-
ment, suggesting that the soluble form of AtDRP1A is phosphory-
lated. These results, together with our observations that E. coli
expressed AtDRP1A, which lacks phosphorylation, forms stable
polymers, point to the need for further study of native AtDRP1A,
in particular the identification of post-translational modifications
and/or relevant interacting proteins. The ability of these putative
modifications or interacting proteins to modulate the polymeric
and membrane binding characteristics of purified AtDRP1A will
be a key step in understanding the targeting and regulation of
the plant-specific DRP1 family.
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