1. A magician wants to cut a 12.6 m piece of rope into two pieces so that one piece is three-fourths as long as the other. Find the lengths of the two pieces of rope.
2. Solve: $-3(\mathrm{k}+4)-(-4 \mathrm{k}-9)=-8$
3. Solve for $\mathrm{b}: A=\frac{1}{2}(b+t) h$
4. Solve: $\frac{x+2}{2} \square \frac{3 x \square 12}{10}=1$
5. Find $f(\square 4)$ when $f(x)=x^{2}+5 x \square 3$
6. The perimeter of a rectangle is 42 ft . One side is 7 ft longer than twice the shorter side. Find the dimensions of the rectangle.
7. Factor: $x^{5}+5 x^{4} \sqcap 84 x^{3}$
8. Solve: $\frac{2 x}{3}=\square 10 \square \frac{24}{x}$
9. Lee walks on top of a pole's shadow toward the tip of the shadow of the pole. When Lee is 30 feet from the pole, the tip of the two shadows meet at a point 5 feet in front of Lee. Find the height of the pole given that Lee is 6 feet tall.
10. Simplify: $\left(6 x^{\square 4}\right)^{3}\left(x^{\square 2}\right)^{\square 5}$
11. Find an equation of the line through $(0,-3)$ and parallel to $-2 \mathrm{x}+\mathrm{y}=7$
12. Find $f(a \square 4)$ when $f(x)=x^{2} \square 1$
13. Solve and graph: $\frac{7 b}{[3}>14$
14. Bee was charged $\$ 111$ for 3 days and 300 miles, while Mel was charged $\$ 199$ for 5 days and 600 miles. What does Best Rental charge per day and per mile?
15. Solve: $\sqrt{5 x+24}=x$
16. Evaluate: $\square_{i=1}^{3}(i \square 1)(i+1)$
17. Multiply: $\begin{array}{lll}\mathbb{W} 1 & 0 \mathbb{W} & 1[\\ \square 0 & 3 \mathbb{\#} & 5=\end{array}$
18. Di's scores on four tests are $85,73,90$, and 77. What must she score on the next test so that her average will be 82 ?
19. Simplify: $\frac{\square 2^{4} z^{3}\left(z^{2}\right)^{\square 4}}{20\left(z^{3}\right)^{\square 1}}$
20. The sum of two numbers is 43 and their difference is 19 . Find the two numbers.
21. Solve: $x^{2} \sqcap 4 x+4=9$
22. Simplify: $\frac{m^{2} \square 25 m}{25 \square m}$
23. The base of the right triangle is 21 meters the hypotenuse is 29 meters, find the length of the other leg of the right triangle.
24. If the $\sin 42^{\circ}=w$ then find the $\cos 48^{\circ}$.
25. Find the tangent of an interior equal angle of an isosceles right triangle.
26. Factor as completely as possible:
$(2 x \square 1)(3 x \square 8)+2 x \square 1$
27. Which of the following is not the graph of a function?
A)
B)

C) $($
28. Given $f(x)=\frac{x \square 5}{4}$ find $f^{\square 1}(\square 2)$
29. Find the amplitude and period of the graph of $y=-3 \cos (x / 3)$.
30. Write an equation of the line that goes through the point $(0,3)$ perpendicular to $y=\frac{x}{2} \square 1$
31. Given $0=5 x^{2} \sqcap 2 x \sqcap 3$, find the value of $\left(x \square \frac{1}{5}\right)^{2}$.
32. Graph: $y=1+(x \square 2)^{2}$
33. Find the eighth term of the geometric sequence, if the first term is 3 and the third term is 12 .
34. Evaluate the determinant: $\left|\begin{array}{ll}5 & 2 \\ 6 & 3\end{array}\right|$
35. $\operatorname{Add} f(\mathrm{x})+g(\mathrm{x})$:
$f(x)=\frac{9}{x^{2} \square^{1}}, \quad g(x)=\frac{12}{3 x+3}$
36. Solve: $\frac{2 y}{y \square^{2}} \square \frac{4}{y \square^{2}}=4$
37. Solve: $\left\{\begin{array}{l}4 x+6 y=6 \\ 5 x \square 2 y=\square 2\end{array}\right.$
38. Solve: $\left\{\begin{array}{l}\square \square 2 y=3 \\ \square x=4 y+6\end{array}\right.$
39. Simplify: $\frac{2+\frac{6}{x}}{1 \square \frac{9}{x^{2}}}$
40. Add: $\tan \Pi+\cot \Pi$
41. Solve: $\left[\begin{array}{l}\square y=x^{2} \square 8 x+16 \\ \square x+y=6\end{array}\right.$
42. Solve: $8=2^{x \square 1}$
43. Divide: $\frac{z^{2}+9 z+14}{z^{2}+12 z+35} \div \frac{z^{2}+2 z}{z^{2} \square 4 z \square 45}$
44. Solve: $5 x^{2}+12 x=4$
45. Simplify: $(\cos \square+\tan \square \sin \square) \div \sec \square$
46. For what values of x is the given function negative? $f(x)=|x \square 3| \square 2$
47. Nan invests $\$ 2800$ in an account that is compounded continually. How much money will she have after 10 years?
[Note: $A=2800 e^{0.065 t}$]
48. Find the formula for the $\mathrm{n}^{\text {th }}$ term of the given sequence: $2,5,8,11,14, \ldots$
49. The population of coyote at Yosemite is given by: $P=60 e^{0.047 t}$ How long will it take for this population of coyote to double?
50. Tom threw an object upward so that its height after tsec is given by: $h(t)=96 t \square 16 t^{2}$ Find the number of seconds before the object hits the ground.

ANSWERS

1) $5.4 \mathrm{~m}, 7.2 \mathrm{~m}$	2) -5	3) $b=2 A / n \square t$	4) -6	5) -7
6) $\begin{aligned} & 161 / 3 \mathrm{ft} \mathrm{X} 42 / 3 \\ & \mathrm{ft}\end{aligned}$	7) $x^{3}(x+12)(x \square 7)$	8) $-12,-3$	9) 42 ft	10) $216 / x^{2}$
11) $y=2 x-3$	12) $a^{2} \Pi 8 a+15$	13) $\mathrm{b}<-6$	$\begin{gathered} \text { 14) } \$ 23 / \text { day } \\ 14 \not \subset / \mathrm{mi} \\ \hline \end{gathered}$	15) 8
16) 11	17) 85	18) $\square 4 / 5 z^{2}$	19) 12,31	20) $-1,5$
21) - m	22) 20 m	23) w	24) 1	$\begin{aligned} & \text { 25) }(2 x-1)(3 x \\ & -7) \end{aligned}$
26) C	27)-3	$\begin{aligned} & \text { 28) amp: } 3 \text {, per: } \\ & 6 \end{aligned}$	29) $y=-2 x+3$	30) $16 / 25$
31) \bigcup_{\downarrow} I: $(0,5)$	32) 384		34) 3	35) $\frac{4 x+5}{x^{2} \square 1}$
36) No solution	37) $(0,1)$	$\text { 38) } \begin{aligned} \{(x, y) \\ x-2 y=3\} \end{aligned}$	39) $\frac{2 x}{x \square^{3}}$	40) sec $/ \mathrm{csc} / 7$
41) $(2,4),(5,1)$	42) 4	43) $(z \square 9) / z$	44) $\square 1.2 \pm 0.4 \sqrt{14}$	45) 1
46) $1<x<5$	47) \$5363.51	48) $a_{n}=3 n \square 1$	49) $143 / 4 \mathrm{yrs}$	50) 6 sec

