PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes service and distribution switchboards rated 600 V and less.

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. RFI: Radio-frequency interference.
D. RMS: Root mean square.
E. SPDT: Single pole, double throw.
1.4 SUBMITTALS

A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions, utility or manufacturer's anchorage and base recommendations, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Related Submittals:

1. Provide overcurrent device coordination study to demonstrate proper overcurrent device ratings, adjustments, and settings.

C. Shop Drawings: For each switchboard and related equipment.

1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Enclosure types and details for types other than NEMA 250, Type 1.
 b. Bus configuration, current, and voltage ratings.
 c. Short-circuit current rating of switchboards and overcurrent protective devices.
 d. Descriptive documentation of optional barriers specified for electrical insulation and isolation if specified.
 e. Utility company's metering provisions with indication of approval by utility company if called out.
 f. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

2. Wiring Diagrams: Power, signal, and control wiring.

D. Field quality-control test reports including the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1, include the following:

1. Routine maintenance requirements for switchboards and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
3. Time-current curves, including selectable ranges for each type of overcurrent protective device.
1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.

B. Source Limitations: Obtain switchboards through one source from a single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NEMA PB 2, "Deadfront Distribution Switchboards."

F. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver in sections or lengths that can be moved past obstructions in delivery path.

B. Store indoors in clean dry space with uniform temperature to prevent condensation. Protect from exposure to dirt, fumes, water, corrosive substances, and physical damage.

C. Handle switchboards according to NEMA PB 2.1 and NECA 400.

1.7 PROJECT CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:

1. Ambient Temperature: Not exceeding 104 deg F.

2. Altitude: Not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Construction Manager no fewer than seven days in advance of proposed interruption of electric service.

2. Indicate method of providing temporary electric service.

3. Do not proceed with interruption of electric service without Construction Manager's written permission.
1.8 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork shall meet load requirements. Requirements for concrete bases for electrical equipment are specified in Division 26 “Hangers and Supports for Electrical Systems.”

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Potential Transformer Fuses: 2 of each size and type.

2. Control-Power Fuses: 2 of each size and type.

3. Fuses for Fused Switches: Equal to 10 percent of amount installed for each size and type, but no fewer than 3 of each size and type.

4. Indicating Lights: 3 of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 MANUFACTURED UNITS

A. Manufacturers:

1. Square D.

B. Front-Connected, Front-Accessible Switchboard:

1. Main devices over 1200A: Fixed, individually mounted.

2. Main devices below 1200A, panel mounted.

4. Sections rear aligned.
C. Nominal System Voltage: As noted on Drawings.
D. Main-Bus Continuous: As noted on Drawings.
E. Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
F. Enclosure: Steel, NEMA 250, Type 1 not over 102 in height.
G. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
H. Enclosure Finish for Outdoor Units: Factory-applied finish in manufacturer's standard color, undersurfaces treated with corrosion-resistant undercoating.
I. Insulation and isolation for main and vertical buses of feeder sections.
J. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
K. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
L. Buses and Connections: Three phase, four wire, unless otherwise indicated.
 2. Ground Bus: 1/4-by-2-inch- minimum-size, hard-drawn copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
 3. Contact Surfaces of Buses: Silver plated.
 4. Main Phase Buses, Neutral Buses, and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 6. Neutral Buses: 100 percent of the ampacity of phase buses, unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables. Bus extensions for busway feeder neutral bus are braced.
M. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

2.3 SURGE PROTECTIVE DEVICES
A. Direct bus connected type as specified in Division 26 Section "Surge Protective Devices."

2.4 OVERCURRENT PROTECTIVE DEVICES
A. Molded-Case Circuit Breaker: NEMA AB 3, with interrupting capacity to meet available fault currents.
1. Electronic trip-unit circuit breakers shall have RMS sensing, field-replaceable rating plug, and the following field-adjustable settings with restricted access cover:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I²t response.

B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 2. Application Listing: Appropriate for application; Type HACR for heating, air-conditioning, and refrigerating equipment.

C. Circuit breaker selection for transformer primary protection:
 1. Circuit Breaker Selection for Transformer Primary Protection: Provide circuit breakers with time-current characteristics to clear transformer inrush currents while still providing protection for the ANSI through-fault protection curve. Provide circuit breakers with adjustable magnetic trip or electronic trip units as necessary to provide time-current curve shaping to achieve long time trip indicated on drawings, inrush coordination and damage protection.

2.5 INSTRUMENTATION

A. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:
 1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y.
 2. Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
 3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Megawatts: Plus or minus 2 percent.
 e. Megavars: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from 5 to 60 minutes.
i. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent. Accumulated values unaffected by power outages up to 72 hours.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

3. Provide open communication interface (Modbus, Lonworks, Bacnet) for connection to Building Automation System to report all data listed in “1” above.

2.6 CONTROL POWER

A. Control Circuits: 120 V, supplied through secondary disconnecting devices from control-power transformer.

B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Furnish portable test set to test functions of solid-state trip devices without removal from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

C. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

PART 3 - EXECUTION

3.1 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

3.2 EXAMINATION

A. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

A. Install switchboards and accessories according to NEMA PB 2.1 and NECA 40.

B. Install switchboards and anchor to concrete bases according to utility or manufacturer’s recommendations, seismic codes at Project, and requirements in Division 26 Section “Hangers and Supports for Electrical Systems.”

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

E. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
 1. Set field-adjustable switches and circuit-breaker trip ranges.

3.4 ADJUSTING
A. Adjust circuit breaker trip and time delay settings to values as instructed by the Engineer.

3.5 IDENTIFICATION
A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Electrical Identification."
B. Switchboard Nameplates: Label each switchboard compartment with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.

3.6 FIELD QUALITY CONTROL
A. Prepare for acceptance tests as follows:
 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
B. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing."
 1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Sections 7.1, 7.5, 7.6, 7.9, 7.10, 7.11, and 7.14 as appropriate. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Instruments, Equipment, and Reports:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 2) Prepare a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
3.7 CLEANING

A. On completion of installation, inspect interior and exterior of switchboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

DISTRIBUTION
MARCH 17, 2008

1. Design: If feasible and when unit substations are provided, the secondary main breaker shall be made a part of the building distribution switchgear or switchboard. In no case shall the switchgear or switchboard or panelboard be directly attached to the transformer. A minimum 12-inch transition section with solid barrier is required to reduce the transfer of transformer heat to the low voltage section. Reduction of heat transfer may be accomplished with secondary throat or ventilated transition section.
 a. When double-ended substations are provided with tiebreakers, the tiebreaker shall be key interlocked with the main secondary disconnecting means requiring the spare key to parallel sections.

2. Equipment: Metal-enclosed switchgear or distribution boards shall be used in buildings or University Facilities at 600V and below for service entrance power, lighting distribution and as the secondary sections of unit substations. Main service disconnecting devices shall be individually mounted. Feeder devices in the main switchboard or switchgear shall be individually mounted. Feeder devices in distribution panelboards shall be group mounted. The following components shall be specified as required:
 a. Service protectors
 b. Molded case circuit breakers
 c. Fusible switches
 d. Motor starters
 e. Low voltage AC power circuit breaker (generally limited to main or tie position)
 f. Bolted pressure switches
 g. Transfer devices or switches
 h. Instrumentation, metering and relaying
 i. Type of Molded Case Circuit Breakers: These devices are available in the following general types:
 1. Thermal magnetic dash pot
 2. Magnetic only
 3. Integrally fused
 4. Current limiting
 5. High interrupting capacity.
 ii. It is required that all circuit breakers that are equipped with solid state trip unit must comply with low voltage switchgear protective devices of this Division.
 1. Air circuit breakers shall be draw out type, installed in individual compartments.
 a. Interrupting ratings of air circuit breakers and molded case breakers shall not be applied in “cascade”.
 iii. The handle operating force on all equipment shall be 75 pounds or less.
3. Provisions for Additional Circuits:
 a. Size of Switchgear or Switchboard: Select a size that will provide sufficient spare spaces, complete with bus and hardware, for a reasonable forecast of future installation of circuits. A minimum of one fully bussed spare section shall be provided. Provide the following spare switches at the design stage:
 i. Four (4), 30-amp/3 poles
 ii. Four (4), 60-amp/3 poles
 iii. Two (2), 100-amp/3 poles
 iv. One (1) 200-amp/3 poles
 b. Additional Section: Provide space in the bus arrangement for the addition of future switchgear or switchboard sections. Switchgear and panelboards shall be accessible with a 4-foot minimum working clearance on all sides regardless of whether the gear is listed as front service or not.
4. Instrumentation shall be per “Metering” section of this Division.
5. Service to Fire Pumps: Fire pumps shall be served and protected as required in NFPA No. 20.
6. Use switchboard instead of panelboard for emergency systems for the purpose of future growth and expansion. The switchboard shall be equipped with metering systems as required in “Metering” section of this standard.
7. When adding switches, circuit breakers, bus plugs or motor starters to existing equipment, the Associate shall include the following in the design documents:
 a. The manufacturer’s nameplate data including manufacturer and catalog information of the existing equipment.
 b. If the equipment is no longer manufactured (i.e. Continental, Arrow Hart, Crouse Hinds, etc.) the Associate will contact a company that specializes in obsolete equipment and obtain the bidding information.

FEEDER CIRCUITS
MARCH 17, 2008

1. System Design: Design feeders for a voltage drop of not more than 2 percent between service entrance terminals and branch circuit breakers terminals with a capacity for 30 percent load growth above initial design, unless greater growth is designated by the University in the initial planning conference.
2. Feeders: Feeder ratings shall not be such a large percentage of the main that coordination of time and current and interrupting capacities cannot be achieved.
3. Wiring: Specify that all feeders be installed in galvanized rigid conduit.

END OF SECTION