PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Distribution panelboards.
2. Lighting and appliance branch-circuit panelboards.
3. Isolation power panelboards.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. RFI: Radio-frequency interference.
D. RMS: Root mean square.
E. SPDT: Single pole, double throw.
1.4 SUBMITTALS

A. Product Data: For each type of panelboard, overcurrent protective device, surge protective device, accessory, and component indicated. Include dimensions and manufacturers’ technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Related Submittals:
 1. Provide overcurrent device coordination study to demonstrate proper overcurrent device ratings, adjustments, and settings.

C. Shop Drawings: For each panelboard and related equipment.
 1. Dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Enclosure types and details for types other than NEMA 250, Type 1.
 b. Bus configuration, current, and voltage ratings.
 c. Short-circuit current rating of panelboards and overcurrent protective devices.
 d. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 2. Wiring Diagrams: Power, signal, and control wiring.

D. Field quality-control test reports including the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

F. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1, include the following:
 1. Manufacturer’s written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.
 1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories through one source from a single manufacturer.

C. Product Options: Drawings indicate size, profiles, and dimensional requirements of panelboards and are based on the specific system indicated. Refer to Division 1 Section “Product Requirements.”

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 1. Ambient Temperature: Not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Owner’s written permission.

1.7 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Six spares for each type of panelboard cabinet lock.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 A. Square D.

2.2 MANUFACTURED UNITS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Mounting as noted on panel schedules. NEMA PB 1, Type 1.

1. Cabinet Front: Flush or surface cabinet as noted on the Drawings.
 A. Square D – Continuous piano hinge trim.

2. Finish: Manufacturer's standard enamel finish over corrosion-resistant treatment or primer coat.

C. Phase and Ground Buses:

2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment ground conductors; bonded to box.

3. Isolated Equipment Ground Bus: Adequate for branch-circuit equipment ground conductors; insulated from box as called out on panel schedules.

D. Conductor Connectors: Suitable for use with conductor material.

1. Main and Neutral Lugs: Mechanical type.

2. Ground Lugs and Bus Configured Terminators: Compression type.

3. Feed-Through Lugs: Mechanical type suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.

E. Service Equipment Label: UL labeled for use as service equipment for panelboards with main service disconnect switches.

F. Future Devices: Mounting brackets, bus connections, and necessary appurtenances required for future installation of devices.
G. Surge Protective Devices: Where indicated, provide manufactured units with direct bus connected type as specified in Division 26 Section “Surge Protective Devices.”

2.3 PANELBOARD SHORT-CIRCUIT RATING

A. Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.4 DISTRIBUTION PANELBOARDS

A. Main bus bars, neutral and ground, shall be copper and sized in accordance with U.L. Standards to limit temperature rise on any current carrying part to the maximums as indicated in UL67.

B. Doors: Secured with vault-type latch with tumbler lock; keyed alike. Omit for fused-switch panelboards.

C. Main Overcurrent Protective Devices: Circuit breaker.

D. Branch Overcurrent Protective Devices:
 1. For Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.

2.5 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Main bus bars, neutral and ground, shall be sized in accordance with U.L. Standards to limit temperature rise on any current carrying part to the maximums as indicated in UL67.

B. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

2.6 OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker: NEMA AB 3, with interrupting capacity to meet available fault currents.
 a. Circuit Breakers 250A and Larger: Magnetic trip element with front-mounted, field-adjustable trip setting with restricted access cover.

B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 4. Do not use tandem circuit breakers.
 5. Provide circuit breakers U.L. listed as type GFEPCI for all self regulating heating (snow melting and heat trace) cables branch circuits.
6. Provide lock on devices for circuit breakers when called out on panel schedules with “LOD” designation.

7. Provide ground fault interrupt 5ma circuit breaker when called out on panel schedules with “GFI” designation.

C. Circuit Breaker Selection for Transformer Primary Protection:

1. Circuit Breaker Selection for Transformer Primary Protection: Provide circuit breakers with time-current characteristics to clear transformer inrush currents while still providing protection for the ANSI through-fault protection curve. Provide circuit breakers with adjustable magnetic trip or electronic trip units as necessary to provide time-current curve shaping to achieve long time trip indicated on drawings, inrush coordination and damage protection.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.

B. Comply with mounting and anchoring requirements specified in Division 26 Section “Hangers and Supports for Electrical Systems.”

C. Mount top of trim 74 inches above finished floor, unless otherwise indicated.

D. Mount plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish.

E. Install overcurrent protective devices and controllers.

 1. Set field-adjustable switches and circuit-breaker trip ranges.

F. Install filler plates in unused spaces.

G. Stub four 1-inch empty conduits from recessed panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

H. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section “Electrical Identification.”

B. Create a directory to indicate installed circuit loads after balancing panelboard loads or created by retrofitting. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable. Coordinate final directory room names and numbers with Owner.
C. Panelboard Nameplates: Label each panelboard with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.

3.3 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding."

B. Connect wiring according to Division 26 Section "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.

2. Test continuity of each circuit.

B. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing"

1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters. Perform electrical tests on all breakers and switches 200A and above or that constitute a component of an emergency distribution system. Main circuit breakers in branch circuit panelboards 225A and below are not required to be tested.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.

1. Measure as directed during period of normal system loading.

2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.

4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

D. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scanning of each panelboard. Remove panel fronts so joints and connections are accessible to portable scanner.

1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
2. Record of Infrared Scanning: Prepare a certified report that identifies panelboards checked and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

E. Testing and Certification (Isolation Power Panels)

1. Provide manufacturer’s engineer or technician for final testing of Isolated Power Panel and the related system as follows.

 a. Simulate faults at each receptacle to ascertain correct function of the L.I.M.
 b. Check the calibration of the L.I.M. meter and record readings.
 c. Record and date all data in permanent log book.
 d. Certify that the system is properly installed and in correct working order.
 e. Turn over to the hospital maintenance department a set of test equipment consisting of a ground integrity tester, current leakage tester, and plug in the L.I.M. tester.

3.5 CLEANING

A. On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

GENERAL PURPOSE POWER AND LIGHTING CIRCUITS

MARCH 17, 2008

1. Design branch circuits for a voltage drop of not more than 3 percent between the branch circuit breakers and the load. As a minimum, increase conductors a minimum of one size when 120-volt branch circuit home runs exceed 75 feet.

2. Lighting circuits shall not be loaded to exceed 60 percent of panel breaker rating.

3. Branch Circuit Panels: Panels for lighting, convenience outlets, small motors, and equipment shall be molded case circuit breaker type with thermal-magnetic trip and AC and DC ratings. Maximum number of poles in any panel shall not exceed 42. Provide for spare circuits.

 a. Breakers shall be 20 ampere, 1 pole breakers, mounted in the panel with bolted bus connections.

 i. Trip rating of breakers for lighting and general use convenience outlets shall be 20 ampere. Provide other sizes as required for special loads.

 b. Sub-Feed Breakers: Panels shall not have sub-feed breakers. If multiple panels are supplied from a long feeder, use sub-feed lugs or separate splice box with full size tap to panel mains.

 c. When installing new branch circuit lighting panels on a project the following shall be considered:

 i. All new panels shall be 42 pole minimum. Designers shall provide each new panel with a minimum of 15% spare 20 amp single pole circuit breakers and 15% spaces. Designers shall consider an additional panel when these minimums cannot be met.

 ii. New panels shall be 225 ampere minimum for 208Y/120 volt, 3 phase, 4 wire service and 100 ampere minimum for 480Y/277 volt, 3 phase, 4 wire service. Do not provide 240/120 volt, 3 phase, 4 wire tapped delta systems. Where 240 volts is required use of buck/boost transformers is required.

 iii. Any new or existing building with 3 phase service shall only have 3 phase panels provided. All exceptions must be approved by the University Engineer’s Office.

 iv. Do not provide panel feeders, fusing or main circuit breakers at less than the panel main device rating.
4. Power panels shall be equipped with molded case circuit breakers of adequate interrupting capacity, or shall be switch and fuse construction using time delay fuses.

END OF SECTION