Katherine Greenwald

A photo of Katherine Greenwald

Associate Professor

Biology; Environmental Science and Society (ENVI) Interdisciplinary Program

401N Science Complex


[email protected]


BS, Brown University, 2002
Ph.D.,Ohio State University, 2009

Interests and Expertise

Broadly, my research areas are molecular ecology (the use of molecular genetic tools to answer ecological questions) and conservation biology. I am particularly interested in amphibians, as they can be important indicators of habitat degradation and other environmental disturbances ("canaries in the coal mine"). I am currently interested in the use of molecular tools for two major purposes. First, such analyses can be highly informative regarding the conservation status of imperiled populations. For example, I have used genetic data to quantify population isolation and its relation to human modification of the surrounding landscape. Second, I use genetic data to identify genomic composition of unisexual (all female) Ambystoma salamanders. These salamanders "steal" sperm from co-occurring species, resulting in numerous polyploid biotypes (genome combinations). This unique mode of reproduction, known as kleptogenesis, likely originated five million years ago. My current research focuses on the ecological consequences and conservation implications of this complex system.


  • BIO 315 Evolution
  • BIO 417 Conservation Biology
  • BIO 484 Herpetology
  • BIO 505 Evolutionary Biology
  • BIO 584 Herpetology

Publications and Presentations

  • Greenwald, K. R. and H. L. Gibbs. 2011. A single nucleotide polymorphism assay for the identification of unisexual Ambystoma salamanders. Molecular Ecology Resources doi: 10.1111/j.1755-0998.2011.03087.x
  • Greenwald, K. R. 2010. Genetic data in population viability analysis: case studies with ambystomatid salamanders. Animal Conservation 13:115–122.
  • Greenwald, K. R., H. L. Gibbs, and T. A. Waite. 2009. Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conservation Biology 25:1232–1241.
  • Bartoszek, J., and K. R. Greenwald. 2009. A population divided: railroad tracks as a barrier to gene flow in an isolated population of Marbled Salamanders (Ambystoma opacum). Herpetological Conservation and Biology 4:191–197.
  • Greenwald, K. R., J. L. Purrenhage, and W. K. Savage. 2009. Land cover predicts isolation in Ambystoma salamanders across region and species. Biological Conservation 142:2493–2500.

Additional Information

Visit the Greenwald Lab Website.