SECTION 14210 - ELECTRIC TRACTION ELEVATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following elevator work:
 1. Elevator demolition work:
 a. Removal of existing elevator machines, motors, controllers, hoisting ropes and sheaves, roller guide assemblies, buffers and pit equipment, cars, car and hoistway doors and transoms, and hall control stations.
 2. Elevator work to remain:
 b. Counterweights.
 c. Hoistway door frames & sills.
 3. New elevator work:
 a. Elevator machines and motors.
 b. Disc brakes.
 c. Ropes and sheaves.
 d. Roller guide assemblies.
 e. Motor power control.
 f. Safeties and governors.
 g. Buffers.
 h. Handrail.
 i. Cars including frame and platform, slings and safeties, car and hoistway doors and transoms, car control stations and car finishes.
 j. Emergency telephones.
 k. Hall control stations.
 l. Position indicator at all floors.
 m. Provide a flush mounted GFCI in the car station.
 n. Replace wiring from existing fused disconnect switch located in the Elevator Equipment Room through the controller to the motor.
 o. Replace the 120-volt cab lighting and cab power wiring from existing power source to the new elevator.
 p. Replace existing telephone wiring, see EMU for the latest requirements on this.
 q. All existing elevator wiring shall be removed and replaced with new.
 r. Replacement of sections of concrete elevator pit floor.

B. Related Sections include the following:
1. Section 01010 “Summary of Work.”
2. Section 03300 “Cast-In-Place Concrete” for concrete for pit floor.
3. Section 09900 “Electrostatic Painting” for electrostatic painting existing hoistway door frames.

1.3 DEFINITIONS

A. Defective Elevator Work: Operation or control system failures; performances below specified ratings; excessive wear; unusual deterioration or aging of materials or finishes; unsafe conditions; the need for excessive maintenance; abnormal noise or vibration; and similar unusual, unexpected, and unsatisfactory conditions.

1.4 REFERENCES

B. Americans with Disabilities Act (ADA).

C. Underwriters Laboratory (U.L).

1.5 SYSTEM DESCRIPTION

A. All elevator equipment shall be manufacturer’s best equipment designed for a minimum service life of 30 years.

B. Speed, Size and Capacity Limitations:
 1. Minimum Speed: Speeds shall be manufacturers nearest minimum standard – 350 fpm.
 a. Field verify size of existing hoistways and elevator and hoistway door openings.
 3. Limitations: All replacement equipment shall use existing power capacity unless noted on the Contract documents or as required by code.

C. Segregation of Elevator Equipment and Services: Provide clearance around elevator equipment in elevator machine room, secondary and pit per the National Electrical Code.
D. Machine Room-less (MRL’s) LULA Elevators and Holeless equipment shall not be considered. All elevator equipment shall be installed in an elevator machine room dedicated specifically for the elevator equipment.

1.6 SUBMITTALS

A. Product Data: Include capacities, sizes, performances, operations, safety features, finishes, and similar information.

B. Shop Drawings: Before beginning fabrication and work, the elevator contractor shall prepare drawings that show the arrangement of the elevator system. Approval of the drawings and other data (submit a minimum of three sets), which are to be submitted by the elevator contractor to the owners representative. Drawings must be approved by the EMU Electrical Shop prior to proceeding with fabrication and installation of the equipment. Field verify all existing conditions and sizes prior to preparation of drawings. Show plans, elevations, sections, and large-scale details indicating service at each landing, machine room layout, coordination with building structure, relationships with other construction, and locations of equipment and signals. Indicate variations from specified requirements, maximum dynamic and static loads imposed on building structure at points of support, and maximum and average power demands. EMU shall be given ten (10) business days for review and approval.

C. The elevator contractor shall provide written confirmation on company letterhead confirming the Non-Proprietary design of the entire control system and components. This shall be signed by an authorized company representative.

D. Samples: For exposed finishes of cars, car doors, and signal equipment; 3-inch- square samples of sheet materials; and 4-inch lengths of running trim members.

E. Manufacturer Certificates: Signed by elevator manufacturer certifying that hoistway, pit, and machine room layout and dimensions, as shown on Drawings, and electrical service, as shown and specified, are adequate for elevator system being provided.

F. Maintenance Materials: Provide information sufficiently complete such that a skilled elevator mechanic can maintain and adjust the machines and their control systems. Include diagnostic and repair information available to Installer's and Owner’s maintenance personnel. Submit for Owner's information at Project closeout, the following:

1. Three (3) sets each of as-built wiring diagrams, definitions of symbols, etc., for each single elevator, duplex or triplex.
2. Two (2) copies of recommended maintenance parts lists to be stocked for maintenance.
3. Three (3) sets of standard metal samples.
G. State Certificate of Inspection is required upon completion of the work. All the above documents and accessories shall be supplied at the time of the State Final Inspection. Any changes made in the field shall be reflected on a new set of as-built documents turned over to the Owner within 30 days after Final Inspection.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Elevator manufacturer or an experienced installer approved by elevator manufacturer who has completed elevator installations similar in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.

B. Regulatory Requirements: In addition to local governing regulations, comply with applicable provisions in American Society Mechanical Engineering Safety Code for Elevators and Escalators, ASME A17.1, the State of Michigan Elevator Code, the National Electrical Code and all other EMU General Conditions or Standards.

C. Accessibility Requirements: In addition to local governing regulations, comply with Section 4.10 in the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines (ADAAG)." And State of Michigan Barrier Free Rules

D. All equipment shall be U.L labeled or listed as required by the State or Local inspecting agency.

1.8 COORDINATION

A. Field verify size of existing elevator s shafts, pits, machine rooms, and existing hoistway entrances to remain.

B. Coordinate locations and dimensions of other work relating to electric traction elevators including pit ladders and sumps in pits; entrance sub-sills; and electrical service, electrical outlets, lights, and switches in pits and machine rooms.

1.9 SEQUENCING

A. Only one elevator may be removed from service at a time, all other elevators must remain in operation at all times. It shall be the Elevator Contractor’s responsibility to maintain the operation of the elevators 24 hours a day, 7 day a week during the time of construction.

B. The Elevator Contractor is responsible for determining the sequence of construction in order to meet the construction schedule.
1.10 WARRANTY

A. Special Manufacturer's Warranty: Written warranty, signed by manufacturer agreeing to repair, restore, or replace defective elevator work or equipment within specified warranty period. Any elevator controller requiring repair or replacement within the initial 365 day warranty period due to reoccurring problems resulting from faulty original design or installation shall cause the warranty to be extended 365 days from the date of correction.

1. Warranty Period: 365 days from date of elevator acceptance with the owner.

1.11 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at acceptance of the Project, provide 90 days full maintenance service by skilled employees of the elevator Installer. During this period the Contractor shall inspect the total installation at least twice a month in the company of an EMU Physical Plant Elevator Shop employee. Include repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper elevator operation at rated speed and capacity. Provide parts and supplies as used in the manufacture and installation of original equipment.

1. Perform maintenance during normal working hours.
2. Include 24-hour-per-day, 7-day-per-week emergency callback service for equipment failures. If failure is caused by misuse or other conditions not under the control of the contractor or manufacturer, the Contractor will be paid for their services at normal billing rates.
 a. Response Time: Two hours or less.

B. Any elevator controller requiring repair or replacement within the initial 365 day warranty period due to reoccurring problems from faulty original design or installation shall have the warranty extended 365 days from time of correction.

PART 2 - PRODUCTS

2.1 FABRICATORS/INSTALLERS

A. Fabricators/Installers: Subject to compliance with requirements, provide electric traction elevators by one of the following:

1. Detroit Elevator Company.
2. Lardner Elevator Company.
3. Otis Elevator Corp.
4. Schindler Elevator Corp.
5. Thyssen Krupp Elevator Company.

2.2 MATERIALS AND COMPONENTS - GENERAL

A. Hoistway work by others:
1. The general contractor shall exercise care in the construction of the hoistway to ensure that ¼” out of plump allowable tolerance is not exceeded.

2. All projections in wall surfaces exceeding 2” shall be beveled not less than 60-75 degrees from horizontal. Omit bevel on beams between elevators in the elevator shafts.

3. Provide one 100 watt LED equivalent light at each landing within the hoistway. Install three way switching at the top and bottom floor.

B. Pit work by others:
1. Provide two 100 watt LED equivalent lights, one 120 volt GFCI receptacle, one light switch at the pit entrance, lower limit switch, steel ladder, buffers for car, upper and lower stop switches. Exact locations shall be verified by the elevator contractor and be acceptable to the State Elevator Inspector.

2. Provide one ladder per elevator in each hoistway. The ladder shall be furnished and installed by the elevator contractor in a location acceptable to the State Elevator Inspector.

3. Clean and prepare the existing sump pump pit and cover for installation of new pump, if applicable. Pump to be provided by others.

C. Machine Room:
1. Machine rooms shall be of sufficient size to provide space for all new elevator equipment and conform to all elevator codes and manufactures equipment requirements.

2. The lighting level in an elevator machine room shall be a minimum of 75 foot-candles and shall illuminate all sides of the elevator equipment.

3. The door to the elevator machine room shall be self-closing, self-locking, open in the outward direction, have push to exit panic hardware and shall have a 7-pin Corbin-Russwin cylinder keyed to the owner’s keying system.

4. The elevator machine room shall be a conditioned space meeting the manufactures requirements of all equipment installed. Independent controller conditioning does not meet the conditioned space requirement.

5. Provide clearance around the elevator equipment located in the machine room in accordance with the National Electrical Code. The maximum distances between the machine room and hoistways are defined by the code.

6. The elevator machinery and control panel shall be in the same room and at the same level.

7. Elevators with group control shall have their control panels in the same room. If the design of an existing building being renovated makes this impossible, a monitor showing the other cars status shall be installed in each machine room.

D. Electric Service:
1. Unless specified otherwise, the elevator electrical service shall be based on the existing building electrical service. New buildings shall provide 480 volt, 3 – phase, 60 – hertz service.
2. For new or existing modifications, ensure that a grounding conductor is provided. This conductor shall originate from the main distribution that serves the elevator room equipment, ex. Electrical substation. This work shall be done in accordance with the National Electrical code.

3. All wiring and raceways shall be installed in accordance with all applicable Electrical Codes and EMU Standards. All conductors shall be installed in a metal steel raceway system (conduit, duct, etc.) consisting on no die-cast parts or components and shall be rigidly secured in place. All finial connections that require flexibility for vibration, sound or any movement, shall be completed with the use of a “steel” flex raceway. All travel cabling shall be terminated with the use of steel strain relief connectors.

4. All wiring for the elevator system shall be copper.

5. All raceways shall have threaded bushings installed.

6. All receptacles shall be GFCI type with the exception of the sump pump if applicable.

7. All electrical work shall meet the EMU Electrical Standards and the National Electrical Code.

8. Install a grounding conductor from the building electrical grounding system to all control components of the elevator, including but limited to the following, machine room equipment, hoistway equipment, hallway fixtures, etc.

E. Passenger Elevator Machines: The machine shall be manufactured with single worm-gearered traction type, with motor, brake gearing and driving sheave mounted in proper alignment on a steel bedplate. The worm shall be of hardened and ground steel, integral with the worm shaft, and shall be provided with a ball or roller thrust bearing designed to take the end thrust of the worm in both directions. The worm gear shall be hobbed from bronze rim which shall be accurately fitted and bolted to the gear spider. The sheave and gear spider shall be supported by heavy duty ball or roller bearings. The roller and anti-friction metal bearings shall be provided with adequate means of lubrication.

1. Motor Power Control: AC variable voltage, variable frequency type.

2. Manufacturer: Provide passenger elevator machines by one of the following:
 b. Owner approved equal.

3. In situations where EMU approves the re-use of an existing machine, the following shall be considered.
 a. Machine oil shall be drained, machine shall be cleaned and oil shall be replaced with new manufacturer approved oil.
 b. All seals and gaskets shall be replaced.
 c. Machine bearings shall be replaced.
 d. Brakes shall be replaced and adjusted per manufactures specifications.
 e. The elevator shall be re-cabled.
F. Motor: Shall be designed and built expressly for elevator service, with a high starting torque and low starting current. The motor armature shall be dynamically balanced. It shall be rated in accordance with the standards of I.E.E.E.
 1. Motor shall be NEMA U-frame type, sized for 80 starts per hour or continuous duty, based on power capacity of existing building.
 2. Motor shall be AC.
 3. Manufacturer: Provide motors by one of the following:
 a. Imperial Electric.
 b. Approved equal.

G. Electric Disc Brake: Shall be spring applied. It shall be held open by an electromagnet actuated by the controller and designed to make smooth, positive stops. It shall be designed to automatically apply in the event of interruption of power supply from any cause.
 1. Manufacturer: Provide electric disc brake by one of the following:
 b. Owner approved equal

H. Ropes and Sheaves:
 1. Hoisting rope shall be adequately sized steel cable with fiber core, and in accordance with ASME A-17.1. Governor ropes shall be iron or steel, and in accordance with ASME A-17.1.
 a. Hoist rope terminations shall be done with “Nylube” wedge clamps.
 2. Replace all existing sheaves and bearings. Sheaves and bearings shall be properly designed and sized in accordance with ASME A-17.1.
 3. Sheave Manufacturer: Provide sheaves by one of the following:
 b. Owner approved equal
 4. Rope Gripper: Provide sheaves by one of the following:
 b. Owner approved equal

I. Counterweights: Reuse existing counterweights if applicable.

J. Safety and Governor: Provide car safety on bottom of each car and governor at top of traction hoistway for each car in accordance with ASME 17.1 to apply car safety devices whenever the car has excessive speed.
 1. Manufacturer: Provide safety and governors by one of the following:
 b. Owner approved equal

K. Buffers: Provide size and type buffers for car and counterweight in accordance with ASME A-17.1 requirements.
 1. Manufacturer: Provide buffers by one of the following:
b. Owner approved equal

L. Guide Rails: Minimum 15 # guide rails

M. Roller Guides: Provide roller guides at top and bottom of car and counterweight frames – minimum 6” for car and counterweight.
 1. Manufacturer: Provide roller guides by one of the following:
 a. ELSCO, Elevator Safety Company.
 b. Owner approved equal

N. Control System: Provide control system for elevator including all necessary starting switches of adequate size, together with all relays, switches and hardware required as required to provide single automatic operation of type indicated and as defined in ASME A-17.1 as “Operation”.
 2. Control System: Shall be non-proprietary type so that full service may be performed by EMU maintenance staff and shall include all diagnostic equipment in order to identify malfunctioning processor units as required for the type of operation system indicated. Any tools, drives or software required or needed to adjust any elevator component shall be provided and turned over to the EMU Electrical Shop at the completion of the project. Control systems that require special proprietary diagnostic tools, passwords or codes to service or maintain are unacceptable and shall not be considered.
 a. Manufacturer: Provide control system by one of the following:
 1) Elevator Controls Company
 2) Virginia Controls
 3) GAL Galaxy Control Systems
 3. Provide logic in all controllers for future Central Monitoring System (CMS) use.
 4. The control system shall contain emergency power logic. Connection of this shall also be included if the building has capability of emergency power generation.
 5. Provide a ground for the control system in accordance with the National Electrical Code and as recommended by the manufacturer.

O. Auxiliary Operations and Controls:
 1. Inspection Station: Provide a permanent top of car inspection station. Provide with a 20A, 125V duplex G.F.I. receptacle and two LED lights with guards, with a standard light switch on top of each car; and also underneath each car. The inspection station shall have a control fixture with continuous pressure button for up and down. The fixture shall have emergency stop button, a toggle switch to make the control operative and a fire jewel.
 2. Independent Service: Provide a keyed switch at car control panel that will remove car from normal service and place it under manual control of an operator. The switch shall have a 7-pin Corbin-Russwin cylinder keyed to Owner’s keying system.
3. Anti-Nuisance Feature: Provide an anti-nuisance feature which will reset car buttons and require re-registration if an excessive number of calls are requested for the measured load or if the load weighing device detects no load.

4. Load-Weighing Bypass Feature: Provide a platform load-weighing device which shall be set to a predetermined fixed percentage of load. The car shall by-pass all hall calls when device is activated, or shall cancel all travel when load limits are exceeded.

5. Automatic Leveling Device: Provide an automatic leveling device which will bring the car to a stop within 1/8 inch of the landing level regardless of load or direction of travel. Landing level will be maintained within the leveling zone irrespective of the hoistway doors being open or closed.
 a. Manufacturer: Type to be approved by EMU.

P. Landing System: Car positioning system using steel hoistway tape, magnetic targets and car top mounted sensors.
 1. Manufacturer: Provide a landing system from the elevator control manufacture. Type to be approved by EMU.

Q. Trail Cord:
 1. The trail cord shall be manufactured by Draka and shall contain only copper conductors, shall have all conductors color coded and numbered and shall have 15% space capacity in addition to all other data cabling requirements listed below. All Trail Cord termination points shall be accomplished with the use of a Kellems grip “woven type” steel strain relief with an integral connector.
 a. Provide one CAT6 twisted pair cable, for the elevator VOIP emergency phone. This cable shall be unbroken and continuous from the elevator COP to the elevator machine controller.
 b. Provide one CAT6 twisted pair cable, for a future camera. This cable shall be unbroken and continuous from the elevator COP to the elevator machine controller.
 c. Provide one six (6) conductor twisted shielded 22 awg cable, for future card access. This cable shall be unbroken and continuous from the elevator COP to the elevator machine controller.

R. Car Frame and Platform: Welded steel units.
 1. Manufacturer: Provide car and platform by one of the following:
 b. Owner approved equal

S. Door Hardware: For each sliding door, furnish and install manufacturer’s standard suspension hangers and tracks complete using 3-1/4” rollers with polyurethane tires. All door hardware shall be new including but not limited to the following; track, hangers, closers, clutches, interlocks, ect...
1. Bottom of doors shall be guided by non-metallic shoes in smooth grooves in the thresholds of the car and landings. All doors shall have fire tabs, all fire tabs shall be installed and in use.

2. Manufacturer: Provide door hardware by one of the following:
 b. Nylube Door Gibs

T. Finish Materials: Provide the following materials and finishes for exposed parts of elevator car enclosures, car doors, hoistway entrance doors and frames, and signal equipment as indicated:
 1. Satin Stainless Steel: ASTM A 666, Type 304, with No. 4, directional satin finish.
 2. Textured Stainless Steel: ASTM A 666, Type 304; with embossed texture rolled into exposed surface, 16 gage, “5WL” pattern.
 a. Surface is satin polished after rolling.
 b. Product: Subject to compliance with requirements, provide "Pattern 5-WL" by Rigidized Metals Corp., 800-836-2580.

2.3 OPERATION SYSTEMS

A. Passenger Elevators: Provide non-proprietary microprocessor operation system for elevator as required to provide type of operation system indicated.
 1. Multi Car Control: Provide "selective collective operation" as defined in ASME A17.1.

B. Auxiliary Operations: In addition to primary operation system features, provide the following operational features for elevators where indicated:
 1. Independent Service: Keyswitch in car control station removes car from group operation and allows it to respond only to car calls. When in independent service, doors close only in response to the door close button.
 2. Loaded-Car Bypass: When car load exceeds a predetermined weight, car will respond only to car calls, not to hall calls. Predetermined weight can be adjusted.
 3. Automatic Dispatching of Loaded Car: When car load exceeds a predetermined weight, doors will begin closing.
 4. Nuisance Call Cancel: When car calls exceed a preset number while the car load is less than a predetermined weight, all car calls are canceled. Preset number of calls and predetermined weight can be adjusted.
 5. Inspection Service: Keyswitch in car control station with Corbin Russwin cylinder for in-car inspection operation in accordance with ASME A17.1.

C. Fire Fighters Service: Provide fire fighters service Phase I and Phase II for each elevator.
 1. Key switches in the hall and car shall operate using the “Adams” WDO-1 key.
2. The alternate landing shall be designated by the Owner.

2.4 SIGNAL EQUIPMENT

A. Manufacturers: Provide vandal resistant car control station, car position indicators, hall push button stations, hall position indicators, and hall lanterns, hall call station pictograph signs manufactured by the following:

1. Manufacturer: Provide signal equipment by one of the following:
 b. Owner approved equal

2. All signal fixtures shall be vandal resistant.

B. General: Provide vandal resistant signal equipment for elevator with satin stainless steel car-call buttons that light when activated and remain lit until call has been fulfilled. All buttons to be lighted with Light Emitting Diodes (LED’s), which illuminate a translucent jewel in center of button. Button shall project just beyond cover plate.

C. Car Control Stations: Mount car control stations in return panel adjacent to car door. Provide fully recessed car control stations with applied metal faceplates or provide car control stations fully recessed in hinged return panel adjacent to car door.

1. Include call buttons for each landing served and other buttons, switches, and controls required for specified car operation.

2. Mark buttons and switches with tamper-proof tactile words, numbers and Braille denotations for required use or function that complies with ASME A17.1.

3. Mount controls at heights so that the top public button shall be 48 inches maximum and the bottom public button shall be 33-1/2 inches above the car floor.

4. Panel covers shall be hinged to provide proper access with covers held in place with stainless steel tamper-proof screws.

5. Main Car Operating Panel shall contain the following:
 a. One button for each floor served.
 b. Door close button.
 c. Door open button.
 d. Emergency stop, with Corbin-Russwin cylinder.
 e. Alarm button.
 f. Phase 2, in-car switch for fire service.
 g. Car call cancel button.
 h. Door hold open switch.

6. Main Car Operating Panel shall contain maintenance personnel operated keyed switches. The top switch shall be at 60 inches maximum above the car floor. These switches shall be independently key-operated with a 7-pin “Corbin-Russwin” cylinder with interchangeable core keyed to Owner’s keying system. Provide the following maintenance personnel operated keyed switches:
 a. Independent operation
b. Lights on/off switch.
c. Fan on/off switch.
d. Inspection on/off switch.
e. Stop switch.
f. Door hold.

7. Fire Jewel: All main car operating panels shall have a standard lighted red jewel to indicate when the Firefighter’s Feature/Emergency Return has been activated. Jewels shall also be located in the Hall Emergency Service switch and at the top of car inspection station.

D. Car Position Indicator: Provide segmented, digital-display type inside car as part of the car control station. Lens for car position indicator shall be scratch resistant plastic.
1. Mechanical indicators are not acceptable.
2. Audible Signals: Provide audible signal to indicate to passengers that car is either stopping at or passing each of the floors served.

E. Emergency Telephone: Provide vandal resistant system that provides two-way voice communication without using a handset. System is contained in a flush-mounted cabinet, with identification, and operating instructions in English and Braille. The telephone shall have a FCC registration number, be compatible with the University VOIP telephone network and be dual-tone multi-frequency signal type. The emergency telephone shall be programmable in the field, be initially programmed to call the campus operator, and be assigned a number for incoming calls. Mount the emergency telephone in the front wall below the car control station.
1. Manufacturer: Provide emergency telephone by one of the following:
 a. See EMU for the latest VOIP phone requirements.

F. Emergency Alarm Bell: Provide an emergency alarm bell in accordance with ASME A-17.1. Locate bell on top of each car.

G. Hall Push-Button Stations: Provide vandal resistant hall push-button stations at each landing for each elevator or group of elevators as indicated.
1. Provide surface mounted units sized to cover recessed box of existing hall call buttons and to allow for mounting of new hall push buttons centered at 42 inches above finish floor.
2. Provide units with flat backing plates if required to cover conditions where existing hall push buttons were removed so as not to require patching of existing walls.
3. Provide vertical stations units with direction-indicating buttons; two buttons at intermediate landings; one button at terminal landings.
 a. Provide vandal resistant hall push-button stations with satin stainless steel car-call buttons that light when activated and remain lit until call has been fulfilled. All buttons to be lighted with Light Emitting Diodes (LED’s) which illuminate a translucent jewel in center of button. Button shall project just beyond cover plate.
4. Provide tamper proof tactile and Braille denotations adjacent to each button.

H. Hall Position Indicators and Hall Lanterns: Provide vandal resistant segmented light emitting diode (LED) digital-display type, located above each hoistway entrance. Provide surface mounted units in stainless steel housing. Lens for car position indicator shall be scratch resistant plastic.
 1. Integrate hall lanterns with hall position indicators. Provide units with illuminated arrows, but provide single arrow at terminal landings.
 2. With each lantern, provide audible signals indicating car arrival and direction of travel. Signals sound once for up and twice for down.

I. Corridor Call Station Pictograph Signs: Provide signs on each hall push-button stations with text and graphics according to ASME A17.1, Appendix H, and instructing persons to “Use Stairs in Case of Fire”.

J. Signage: The following signs at each landing:
 1. Provide 2 inch high raised numeral signs at each landing to indicate floor of landing. Provide 1 inch high Braille denotations next to each raised numeral sign.
 a. Signs shall be metal tamper proof tactile and Braille denotations.
 b. Mount signs visible from inside of car on entrance frame, 60 inches above floor on both sides of door opening.

2.5 CAR DOOR CONTROLS

A. Door Operator: Provide GAL MOVFR 2 door operator, designed to operate the car and hoistway doors simultaneously, at a maximum speed of two feet per second. Door movement shall be electrically cushioned at both limits of travel, and the door operating mechanism shall be arranged for manual operation in the event of power failure.
 1. Manufacturer: Provide a door operator from the following:
 a. GAL-MOVFR 2

B. Infrared Array: Provide door reopening devices with a uniform array of microprocessor-controlled, infrared light beams projecting across car entrance. Interruption of one or more of the light beams shall cause doors to stop and reopen.
 1. Manufacturer: Provide infrared array from the following:

C. Nudging Feature: After car doors are prevented from closing for a predetermined adjustable time, through activating door reopening device, a loud buzzer shall sound and doors shall begin to close at reduced kinetic energy.

D. Emergency Hoistway Access: Provide mechanical means for emergency release of all landing hoistway doors, provide emergency release holes at every landing.

E. Smoke Detectors: Provide 24 VAC, 4-wire smoke detector. Auxiliary contacts shall be used to send a signal to annunciator panel showing each detector in the system.
1. Manufacturer:
 a. 8000 Series; Gentex.

2.6 PASSENGER ELEVATOR CAR ENCLOSURES

 A. General: Provide flush panel car enclosure of welded construction made from stainless-
 steel sheet, ceiling, accessories, access doors, doors, power door operators, lighting, and
 ventilation.
 2. Car Interior Wall Panels: Textured vandal resistant stainless-steel sheet with No. 4 finish, with a nominal thickness of 0.0677 inch (14 gage) reinforced at 16-inch maximum spacing.
 3. Fabricate car with recesses and cutouts for signal equipment.
 4. Fabricate car door frame integrally with front wall of car.
 5. Textured vandal resistant Stainless-Steel Doors: Flush, reinforced hollow metal doors, fabricated from 5WL textured 304 stainless-steel face sheets, 16 gauge minimum.
 6. Ceiling: Lay-In or drop ceilings are not permitted. Cab lighting and fan shall be recessed flush to the finished ceiling. Lighting shall be LED type in a 4000 Kelvin color temperature 80 CRI or greater. The use of cove lighting is permitted when applicable and approved.
 8. Car Sills: Extruded nickel silver, with grooved surface, 1/4-inch-thick with polished finish.
 9. Handrails: Shall be 3/8” thick plate, 304 stainless steel handrail with No. 4 satin finish. Hand rails shall be 1-1/2” wide and 8” high for passenger cars, freight or service cars shall have different requirements dependent upon the product or items moved. Provide handrails on the back and side walls of the cab. The ends of all rails shall be returned to the walls of the car within 3 inches of the corner.
 10. Access Panels: Provide top of cab access panel, secure in manner acceptable to the State Elevator Inspector.
 11. Certificate: Etch on car operating panel certificate information issued by the State Elevator Inspector (showing the state serial number, capacity, number of passengers). The actual operating certificate will be on file at EMU Physical Plant.
 12. Car Ventilation: Furnish exhaust fan to circulate air through car enclosure into hoistway, minimum 100 cfm.
 14. Lighting: 120V LED, 4000 kelvin, 80 cri or better light fixtures.
 15. Provide a handrail around the top of car, handrail by Wurtec.
 16. Elevator Protection: Provide protective cab padding for each elevator installed. Provide all integral hooks in the elevator cab for a complete installation. Padding shall be provided thru W. E. Palmer, shall have integral grommets, have a
protective storage bag, shall cover all walls of the elevator and have the embroidered EMU logo on the back wall pad.

17. Cab drawings shall be provided to EMU for approval. EMU shall be given ten (10) business days for review and approval.

2.7 HOISTWAY ENTRANCES

A. General: Reuse existing horizontal-sliding, door- hoistway entrances as applicable. Install new door track systems, hardware, hangers, rollers, closers and interlocks. Reuse existing hoistway frames and sills. Use 3-14” diameter polyurethane tires.

B. Materials and Fabrication: Provide not less than the following:
 1. Door frames shall be minimum 16 gauge Type 304 stainless steel. When re-using existing painted frames, strip and refinish with HVLP painting method.
 2. For each sliding door, furnish and install sheave type two-point suspension hangers and tracks complete, by GAL Manufacturing. Sheaves shall be a minimum of 3-1/4” inch diameter, and have polyurethane tires with ball bearings properly sealed to retain grease. Tracks shall be drawn steel shapes, smooth-surfaces and shaped to conform with the hanger sheaves.
 3. The bottoms of the doors shall be guided by nonmetallic shoes in smooth grooves in the thresholds of the cars and landings. Thresholds shall be nickel silver.
 4. For painted doors, provide and install Type 304 stainless steel kick plates on the interior of the doors, minimum 10” high and full width.

2.8 FREIGHT ELEVATORS:

A. Freight or service elevators shall comply with these standards except as modified or superseded by applicable codes or this section.

B. Vertical car doors and hoistway doors shall be hollow metal only. Each door shall include a wired safety light window of at least 144 square inches, with the car door light and hoistway door light in alignment.

C. All doors shall be power operated and shall have a non-proprietary operator from The Peelle Company.

D. Provide an electronic edge manufactured by The Peelle Company, designed for use on bi-parting doors.

E. Sills shall be of a heavy-duty truckable quality. For side slide doors, the sill shall be nickel silver.

F. Platforms shall be steel. Stainless steel diamond plate shall be used for the floor and for the walls up to 42” from the finished floor. Brushed vandal resistant stainless steel shall be used above 42”
G. Lighting used shall be vandal resistant.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elevator areas for compliance with requirements for installation tolerances and other conditions affecting performance. Examine hoistways, hoistway openings, pits, and machine rooms as constructed; verify critical dimensions; and examine supporting structure and other conditions under which elevator work is to be installed. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Provide for all hoisting and rigging necessary to remove existing elevator equipment and to install new elevator equipment.

3.2 DEMOLITION OF ELEVATOR EQUIPMENT

A. Disassemble and remove existing elevator equipment as indicated. Take care not to damage adjacent finishes.

B. Remove and salvage motors and generators:
 1. Clean salvaged items.
 2. Pack or crate items after cleaning. Identify contents of containers.
 3. Transport items to Owner's storage area on Campus.
 4. Protect items from damage during transport and storage.

C. Coordinate with Owner any items to be salvaged prior to work. Coordinate salvage by Owner or Contractor and tag any items planned for salvage.

D. Disposal: Transport demolished elevator materials off Owner's property and legally dispose of them.

3.3 INSTALLATION

A. Refer to Article 1.9 Sequencing for sequencing of elevator work.

B. Comply with manufacturer's written instructions.

C. Welded Construction: Provide welded connections for installing elevator work where bolted connections are not required for subsequent removal or for normal operation, adjustment, inspection, maintenance, and replacement of worn parts. Comply with AWS standards for workmanship and for qualifications of welding operators.

D. Sound Isolation: Mount rotating and vibrating equipment on vibration-isolating mounts designed to minimize transmission of vibrations to structure and thereby minimize structure-borne noise from elevator system.
E. Lubricate operating parts of systems, including ropes, as recommended by manufacturers.

F. Alignment: Coordinate installation of hoistway entrances with installation of elevator guide rails for accurate alignment of entrances with cars. Where possible, delay final adjustment of sills and doors until car is operable in shaft. Reduce clearances to minimum, safe, workable dimension at each landing.

G. Set sills flush with finished floor surface at landing. Fill space under sill solidly with nonshrink, nonmetallic grout.

H. Leveling Tolerance: 1/8 inch, up or down, regardless of load and direction of travel.

I. Install smoke detectors in accordance with National Electrical Code and ASME A 17.1 at each Elevator Lobby and Elevator Machine Room.

J. Cleaning: Upon completion of the work, clean pit, top of car, hoistway and elevator machine room of all construction dust, dirt and debris.

3.4 FIELD QUALITY CONTROL

A. Acceptance Testing: On completion of elevator installation perform acceptance tests as required and recommended by ASME A17.1 and governing regulations and agencies.

B. Operating Test: Load elevators to rated capacity and operate continuously for 30 minutes over full travel distance, stopping at each level and proceeding immediately to the next. Record temperature rise of elevator machines during 30-minute test period. Record failure of elevators to perform as required.

1. Perform operating test specified above on one elevator of each type, capacity, speed, and travel distance.

C. Advise Owner, Architect, and authorities having jurisdiction in advance of dates and times tests are to be performed on elevators.

3.5 DEMONSTRATION AND TRAINING

A. Training: Instruct Owner's personnel in proper use, operations, and daily maintenance of elevators. Training shall be for a minimum of 8 hours and shall include, but not be limited to the following:

1. Elevator System Design, Operational Requirements, and Criteria: Include the following:
 a. Elevator system, subsystem, and equipment descriptions.
 b. Performance criteria.
 c. Regulatory requirements.
 d. Equipment function.
 e. Operating characteristics.
f. Limiting conditions.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project Record Documents.
 e. Identification systems.
 f. Warranties.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
 c. Shutdown instructions for each type of emergency.
 d. Operating instructions for conditions outside of normal operating limits.
 e. Sequences for electric or electronic systems.
 f. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Safety procedures.
 f. Operating procedures for emergencies.
 g. Operating procedures for system, subsystem, or equipment failure.

5. Adjustments: Include the following:
 a. Alignments.
 b. Checking adjustments.
 c. Noise and vibration adjustments.
 d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning
 e. Procedures for preventive maintenance.
 f. Procedures for routine maintenance.
 g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
 b. Repair instructions.
c. Disassembly; component removal, repair, and replacement; and reassembly instructions.

d. Instructions for identifying parts and components.

e. Review of spare parts needed for operation and maintenance.

B. Make a final check of each elevator operation with Owner's personnel present and before date of Substantial Completion. Determine that operation systems and devices are functioning properly.

END OF SECTION 14210